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Flow Simulations: 
The Lagrangian Averaged Navier-stokes Equations and optimization 

FA9550-05-1-0334 

Kamran Mohseni 
Department of Aerospace Engineering 

University of Colorado, Boulder 

Abstract 

This project had two objectives in using Lagrangian techniques and their application in flows. The 
pinnacle goal of first research thrust area was to develop a modeling technique that will allow for efficient 
computation of compressible flows which could include simulations involving both shock and turbulent 
behavior. Spatial averaging of the nonlinear convective term was applied initially to the Burgers equation, 
which is a very simplistic model for compressible shocks and turbulence. During the course of the research 
the solutions to the modified Burgers equation have been proven to exist and converge to the physically 
relevant solution as the spatial averaging is reduced. Numerical simulations were conducted on the 
modified equations showing proper wave propagation and energy decay results. This technique was then 
extend into the Euler equations with promising preliminary results. 

The second research thrust area was the development of Lagrangian averaging tools for analyzing flow 
over a lifting airfoil. Lagrangian techniques have been recently used in defining coherent structures (LCS) 
in flows. In this case, stable and unstable manifolds were computed. Intersection of these manifolds define 
lobes with distinct mixing behavior. Finite time Lyapanov exponent (FTLE) of the flow map was used 
to identify Lagrangian coherent structures in complex unsteady flow around an Eppler 387 airfoil. The 
unstable and stable manifolds identify the separation and reattachment points respectively. 

1    Shock Regularization 

Introduction No one can deny the importance of fluid dynamics in the modern world. It can be seen 
everyday in planes flying through the sky to the running water in our sinks. The governing equations of fluid 
dynamics, the Euler and Navier-Stokes equations have been well known for over 200 year, but still much 
is unknown. The nonlinear structure found in both the equations present serious difficulties. Shocks and 
turbulence are the two main fluid behaviors that are computationally difficult. Both of these phenomenon 
develop as a result of the nonlinear terms and the small scales that they produce. If one were to properly 
model the effect of these small scales then it is possible to produce a technique that could simultaneously 
capture both turbulence and shocks. It is towards this goal that the research presented here has been 
developed. 

One of the methods that has recently met with quite a bit of success in modeling certain turbulent flows 
is the Lagrangian Averaging method [I; '-'; -i; 1; 5; 6; 7; 8; 9; Hi]. This method was applied to incompressible 
flow resulting in the Lagrangian Averaged Navier Stokes (LANS-Q) equations where a filtered convective 
velocity was introduced in the nonlinear term. It was this work that provided the inspiration and beginnings 
of the research presented here. 

The goal this research is to develop a similar method of modeling compressible flows. It was intuited that 
it was the modified nonlinear term u • Vu that was the key to the LANS-Q equation and that a similar term 
could be introduced into the equations for compressible flow. To examine the effect of this nonlinear term 
in compressible flow it was inserted into an extremely simplified model of compressible flow, the inviscid 
Burgers equation resulting in the equations 

ut + QVu = 0 (la) 

u = sa*u (lb) 

9° = £*£). (lc) a    a 



where g represents the spatial filter and a represents the amount of filtering. These equations are referred to 
as the Convectively Filtered Burgers (CFB) equations. The following section summarizes the research that 
has been accomplished regarding these equations. 

1.1    Burgers Equation 

It is of upmost importance that the CFB equations capture the behavior of the original equations while 
remaining regularized. In order to demonstrate this the research has proven that the CFB equations will 
converge to the solutions of the inviscid Burgers equations, 

ut + u • Vu = 0, (2) 

as the spatial filtering is reduced. This was accomplish in three steps 

• Prove that the solutions to the CFB equations exist and are unique 

• Prove that as the filtering is reduced, as a —• 0, the solutions of the CFB equations converge to weak 
solutions of the inviscid Burgers equation. 

• Prove that those weak solutions are the physically relevant solution, i.e. the entropy solution. 

In the course of the research the following theorems were proven addressing these steps. The first theorem 
establishes that solutions to the modified Burgers equations exist and are unique. It also establishes the fact 
that the solutions are in fact continuous and will remain so throughout time. 

Theorem 1.1 Let g(x) G W1-1(W1) and Uo(x) 6 C1(Rn), then there exists a unique global solution u(x, t) 
€ C1^•,^) to the initial value problem (>'). 

ut + u • Vu = 0 (3a) 

u = g * u (3b) 

u(x,0) = uo(x) (3c) 

The next theorem establishes that as the spatial filtering decreases the solutions will converge to a weak 
solution of the inviscid Burgers equations. This additionally establishes that the shock speeds found in the 
CFB equations will be the same as those of the original equations. 

Theorem 1.2 For any g which Fourier transform is of the form 

9(k) = i   , v^"—TTToT        with n<oo,Cj >0Cn^ 0, 

the solutions to the CFB equations converge to a weak solution of the inviscid Burgers equation. 

Finally the next theorem establishes that for specific initial conditions the solutions will converge to the 
entropy solution of inviscid Burgers equations. 

Theorem 1.3 The solutions of the CFB equations converge to the entropy solution of the inviscid Burgers 
equation for continuous bell-shaped initial conditions. 

A conjecture was then put forward and while not proven was supported with substantial reasoning. 

Conjecture 1.4 The solutions ua of the CFB equations converge to the entropy solution of the inviscid 
Burgers equation for continuous initial conditions as a —• 0. 

If this conjecture is assumed to be true then the equations paired with a filtered initial condition 

ut + (u * ga)ux = 0 (4a) 

u(x, 0) = «o * ga (4b) 

will converge to the entropy solution for any bounded initial condition. 
Thus through analytical means it was proven that this use of spatial averaging in the nonlinear term will 

successfully regularize Burgers equation and will capture the physical behavior of the original equation. 



Numerical Results In order to more thoroughly understand the CFB equations, numerical simulations 
were run. In figure I the behavior of a pulse under the CFB equations can be seen. The pulse will steepen 
and from a shock front as time progresses, but remain continuous. 

Figure 1: Evolution of the CFB equations. Here a smooth pulse can be seen evolving into a shock front, but 
remaining continuous. 

Figure 2 compares the solutions of the CFB equations to the solutions of the inviscid Burgers equation. 
It demonstrates the CFB equations capture both the shock and expansion wave behavior found in Burgers 
equation. 

In addition to general behavior of the CFB equations it was shown with numerical techniques that the 
thickness of the shocks can be controlled by varying the parameter a. Additionally a controls energy decay 
which was found to be similar to that of the viscous Burgers equation. The spectral energy profile was 
also examined where it was seen that the choice of the spatial filter, g, greatly affects the spectral energy 
decomposition and controls the degree of smoothness of the solutions. 

This research has led to several journal publications [I I; 12] and conference papers [13; I 1; 7]. It also 
made up a significant portion of a graduate student's thesis [ 15]. 

1.2    Euler equations 

While the successful regularization of the Burgers equation is a good starting point, in order to have real 
world applications research into the Euler equations has begun. Recently preliminary examinations into 
a regularization of the Euler equations have begun with promising initial results. Both the Euler and 
homentropic Euler equations have been examined. In both cases the nonlinear terms of the equations have 
been modified in a similar manner as the Burgers equation. For the homentropic Euler equations the modified 
equations are 

pt + pux + upx = 0 

(pu)t + (pu)ux + u{pu)x + Px = 0. 

(5a) 

(5b) 
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Figure 2: This figure compares the entropy solution of inviscid Burgers equation with the solution to the 
CFB equations for a = 0.02. It is easy to see that the CFB solution is capturing both the rarefaction wave 
and the shock front behavior. 

where the bar represents the spatial filtering as before and the pressure, P, is purely a function of the density.. 
The equations for the Euler equations without the homentropic assumption are 

Pt + pv-x + upx = 0 
(pu)t + puux + u(pu)x + Px = 0 

(pe)t + peux + u(pe)x + Pux + uPx = 0 

P = (7 " 1) (pe ~ Ipu' 

(6a) 
(6b) 

(6c) 

(6d) 

With analytical techniques these equations have been proven to converge to weak solutions of the original 
equation provided modest assumptions on the solutions. Numerically the equations are shown promising 
behavior. The solution appear to be well regularized and capture much of the behavior of the original 
equations.   Figure 3 shows a double shock tube simulation for the modified homentropic Euler equations 



plotted against the solution to the original homentropic Euler equations. Both the expansion wave and 
shock behavior are being captured. Figure 1 shows a shock tube simulation for the Euler equations. The 
modified equations are showing a regularized solution that is capturing the expansion wave, contact surface, 
and shock. 

Figure 3: This figure shows a numerical simulation of the modified homentropic Euler equations (dashed 
line) plotted against the solution to the homentropic Euler equations (solid line). Here the value of a = 0.05. 
In both figures it is clear that the modified homentropic Euler equations are capturing both the expansion 
wave and shock behavior, (a) The velocity, (b) The density. 
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Figure 4: This figure shows a numerical simulation of the modified Euler equations (dashed line) plotted 
against the solution to the Euler equations (solid line). Here the value of a = 0.05. In the figures it is 
clear that the modified Euler equations are capturing both the expansion wave, contact surface, and shock 
behavior, (a) The density, (b) The velocity, (c) The energy. 

Future work in this area includes proving the existence and uniqueness of the results for ID and higher 
dimensional Euler equation, extensive numerical simulation to characterize the equations in ID and multi- 
dimensions, and performing a shock turbulence simulations in 3D. 



2    Computation of Coherent Structures at Low Re 

In this section we will use Lagrangian techniques in order to understand the unsteady vortex shedding around 
an airfoil. In particular we use a new Lagrangian approach; namely Lagrangian Coherent Structures (LCS) 
[Hi; 17]. Lagrangian Coherent Structures are invarient material manifolds that can be identified through 
carefull study of particle mixing behavior. These manifolds are responsible for the organization of mixing in 
the wake of an airfoil, and hold the potential for new insights into the understanding of active flow control. 
Lagrangian Coherent Structures can be an important tool in achieving this goal. As we will demonstate, 
LCS can be very usefull in identifying the separation manifolds, and the energetics of flow structures within 
the separation bubble. 

In persuit of this goal, our group has developed software that allows for detailed computation of LCS 
manifolds in two-dimensional Naiver-Stokes flow. The software has been used to expose manifolds in the 
separated region which were previously hidden by traditional flow maps and Eulerian approach. 

Figure 5: Where the particles come from in a shed vortex behind a 2D airfoil? Stable and unstable manifold identify the boundaries 
of regions with different mixing behavior. Colors represent drifters in the flow. Different colors are separated by the stable and unstable 
manifolds. The region confined between a stable and unstable manifold form a lobe which has a distinct mixing property. See Cardwell 
and Mohseni [-'•]. 

Lagrangian coherent structures (LCS). Lagrangian coherent structures provide a method of analyzing 
a flow field from a dynamical systems perspective. LCS were introduced by [ I ^] and further defined by [17]. 
LCS represent lines of negligible fluid flux in a flow and therefore govern transport and mixing in the flow. 

fi 



Figure 6: Contour plots of FTLE over airfoil at time = 0.00, S1-S7 are the major recurring structures in the 
flow 

Figure 7: Stable and Unstable manifolds overlayed showing potential for lobe analysis. The figure also 
shows locations of several stagnation points in the flow, • designate elliptic stagnation points, T designate 
hyperbolic stagnation points. Unstable manifolds characterize the separation lines while stable manifolds 
can be used to identify the reattachment lines. 

Due to the general framework provided by LCS, they have been applied to a wide range of different areas 
including pollution transport in the ocean [19], two-dimensional turbulence [18; 20], vortex shedding behind 
an airfoil in our group [-' I; 22], and transport in empirical vortex rings and hydromedusa swimming [23; '-' I]. 
They have proven to be an effective tool for identifying exact vortex boundaries and can be used to divide 
a flow into lobes which govern the transport [25]. We follow the procedure for computing LCS outlined by 
[ I 7] and we provide here a brief overview for those unfamiliar with this concept. 

We use CFd results around an Eppler 387 in order to calculate the finite time Lyapunov Exponent 
(FTLE). The resulting FTLE field depends on the integration time, T, in that larger values of T reveal more 
structures than smaller values of T so T may be chosen to reveal the desired level of detail without worrying 
about influencing the major structures which are revealed. Additionally, T may be positive or negative, 
representing forward and backward particle advection respectively. Therefore, there are two types of FTLE 
fields, forward time and backward time. 

Once the FTLE eld has been calculated, LCS are dened as ridges in the FTLE eld [17]. In practice, 
LCS are usually visualized by looking at contour plots of the FTLE eld. Conceptually, ridges in the forward 
FTLE field, called forward LCS, represent lines where particles diverge most quickly and backward LCS 
represent lines where particles converge. For this region, dye visualization experiments reveal structures 
very similar to backward LCS. Additionally, for LCS which are sufciently strong, the flux across the LCS is 
negligible, a property which makes LCS extremely useful for analyzing transport in flows. Finally, forward 
LCS are analogous to the stable manifolds of a dynamical system and act as repelling material lines while 
backward LCS are analogous to the unstable manifolds of a dynamical system and act as attracting material 
lines. The interaction of these LCS largely govern transport in a flow and their intersections can be used to 
exactly dene a vortex without the use of arbitrary thresholds of vorticity [23]. 



Example of LCS Calculation for Flow Over an Airfoil and Flow Structure Interaction Problems. 
We have developed LCS computational capabilities for flow around fixed and deforming objects in unstruc- 
tured mesh; see Cardwell & Mohseni [26; 22]. We have primarily analyzed low Reynolds number (Re) flows 
over airfoils [27; 28; 29; 27; 26; 22], One of the largest efforts was a study on where the fluid in vortices shed 
behind an airfoil originates [27; 28], Further references on LCS are available at [17; 30; 19; 31; 27; -V2; 23; 33]. 
LCS allow the application of well understood dynamical systems techniques to analysis of 2D aperiodic flows 
which may come from experimental or CFD data. 
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